0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Study of Water Droplet Evaporation on a Superhydrophobic Surface

[+] Author Affiliations
Zhenhai Pan, Susmita Dash, Justin A. Weibel, Suresh V. Garimella

Purdue University, West Lafayette, IN

Paper No. HT2013-17697, pp. V003T21A011; 9 pages
doi:10.1115/HT2013-17697
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

A comprehensive numerical model is developed to predict evaporation of a water droplet from an unheated superhydrophobic substrate. Analytical models that only consider vapor diffusion in the gas domain, and assume the system to be isothermal, over-predict the evaporation rates by ∼25% compared to experiments conducted on such surfaces. The current model solves for conjugate heat and mass transfer in the solid substrate, liquid droplet, and surrounding gas. Evaporative cooling of the interface is accounted for, and vapor concentration is coupled to local temperature at the interface. Buoyancy-driven convective flows in the droplet and vapor domains are also simulated. A droplet evaporating in a constant-contact-angle mode with an initial volume of 3 μl and contact angle of 160 deg is considered at an ambient temperature of 21°C and 29% relative humidity, to match conditions of related experiments. The interface cooling effect suppresses the evaporation rate significantly; however, natural convection in the gas and liquid domains has a negligible impact on the evaporation rate. The local evaporation flux along the droplet interface predicted by the model is compared to that predicted by an analytical diffusion-based model. The numerically calculated total evaporation rate agrees with experimental results to within 2%. The large deviations between past analytical models and the experimental data on superhydrophobic surfaces are reconciled.

Copyright © 2013 by ASME
Topics: Drops , Evaporation , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In