0

Full Content is available to subscribers

Subscribe/Learn More  >

The In Situ Adaptive Tabulation (ISAT) Algorithm for Reacting Flow Computations With Complex Surface Chemistry

[+] Author Affiliations
Sandip Mazumder

The Ohio State University, Columbus, OH

Ankan Kumar

Intel Corporation, Hillsboro, OR

Paper No. HT2013-17694, pp. V003T21A002; 10 pages
doi:10.1115/HT2013-17694
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

The In Situ Adaptive Tabulation (ISAT) procedure, originally developed for the efficient computation of homogeneous reactions in chemically reacting flows, is adapted and demonstrated for reacting flow computations with complex heterogeneous (or surface) reactions. The treatment of heterogeneous reactions within a reacting flow calculation requires solution of a set of nonlinear differential algebraic equations at boundary faces/nodes, as opposed to the solution of an initial value problem for which the original ISAT procedure was developed. The modified ISAT algorithm, referred to as ISAT-S, is coupled to a three-dimensional unstructured reacting flow solver, and strategies for maximizing efficiency without hampering accuracy and convergence are developed. These include use of multiple binary tables, use of dynamic tolerance values to control errors, and periodic deletion and/or re-creation of the binary tables. The new procedure is demonstrated for steady-state catalytic combustion of a methane-air mixture on platinum using a 24-step reaction mechanism with 19 species, and for steady-state three-way catalytic conversion using a 61-step mechanism with 34 species. Both reaction mechanisms are first tested in simple 3D channel geometry with reacting walls, and the impact of various ISAT parameters is investigated. As a final step, the catalytic combustion mechanism is demonstrated in a laboratory-scale monolithic catalytic converter geometry with 57 channels discretized using 354,300 control volumes (4.6 million unknowns). For all of the cases considered, the reduction in the time taken to perform surface chemistry calculations alone was found to be a factor of 5–11.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In