0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer in Multiple Parallel High Aspect Ratio Ducts With Triangular Trench Enhancement Features

[+] Author Affiliations
Justin Lamont, Krishnashis Chatterjee, Srinath V. Ekkad

Virginia Tech, Blacksburg, VA

Gustavo Ledezma, Christopher Kaminski, Anil Tolpadi

General Electric Company, Schenectady, NY

Paper No. HT2013-17325, pp. V003T20A005; 9 pages
doi:10.1115/HT2013-17325
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

Detailed heat transfer coefficient distributions and pressure drop have been obtained for high aspect ratio (AR = Width/Height = 12.5) ducts with triangular trench enhancement features oriented normal to the coolant flow direction. Numerical and experimental approaches analyze the performance of triangular trenches for six geometrically identical ducts branching from a common plenum. The numerical approach is based on a Reynolds Averaged Navier Stokes (RANS) turbulence model with an unstructured mesh. A transient liquid crystal (TLC) technique is used to experimentally calculate Nu on the ducts surfaces. Reynolds number (Re = 7080, 14800, and 22400, with respect to the duct hydraulic diameter are explored. As Computational Fluid Dynamics (CFD) and TLC results are both detailed, qualitative and quantitative comparisons are made. Experimental results show the closest and furthest ducts from the entrance of the plenum are considerably affected, as recirculation zones develop which partially choke the inlet the respective ducts. Results from the experiments are compared to CFD predictions from Duct 4. In addition, the experimental data are recalculated with the maximum bias in TLC temperature to indicate an improved matching between CFD and experimental methods to demonstrate that CFD captures the wall heat transfer coefficient trends similar to experimental results. The triangular trenches enhance heat transfer in the ducts two-fold compared to smooth wall Dittus-Boelter Nusselt number correlation for flow in tubes.

Copyright © 2013 by ASME
Topics: Heat transfer , Ducts

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In