Full Content is available to subscribers

Subscribe/Learn More  >

Fluid Flow and Capillary Limit in Heat Pipe Thermal Ground Planes

[+] Author Affiliations
Mohammed T. Ababneh, Frank M. Gerner

University of Cincinnati, Cincinnati, OH

Paper No. HT2013-17034, pp. V003T10A013; 12 pages
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME


This work shows the solution of the fluid flow and the capillary limit in heat pipe thermal ground planes after solving the temperature field. In addition, the effect of wall shear stress and the interfacial shear stress in the liquid pressure of the TGP is studied. In order to obtain more accurate results it is necessary to solve the velocity and thermal fields in both the liquid saturated wick and the vapor. It is also important to account for the mass, momentum and energy balances at the interface between the vapor and liquid. Previous work demonstrated that for the TGP’s which utilize water as the working fluid, the Jacob number is very small. A consequence of this is that convection of liquid with the wick is much smaller than conduction and the temperature may be solved independently of the velocity field. These solutions were presented in previous work. A key feature of the thermal model is that it relies on empirical interfacial heat transfer coefficient data to very accurately model the interfacial energy balance at the vapor-liquid saturated wick interface. One important result uses a solution for the evaporation and condensation rates and hence normal velocities at the interface. The results show that for all of the TGP’s lengths, the ratio between the pressure drop in the vapor and the pressure drop in the liquid is close to zero. Therefore, the pressure drop in the liquid will determine the capillary limit in the TGP.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In