0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer Enhancement of a Heat Sink by Inclined Synthetic Jets for Electronics Cooling

[+] Author Affiliations
Arya Ayaskanta, Longzhong Huang, Terrence Simon, Taiho Yeom, Tianhong Cui

University of Minnesota, Minneapolis, MN

Mark North

Thermacore, Inc., Lancaster, PA

Paper No. HT2013-17769, pp. V003T10A011; 7 pages
doi:10.1115/HT2013-17769
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

Rising thermal dissipation from modern electronics has increased the challenge of cooling using conventional heat sinks. In addition to fans and blowers, focus is turning to active cooling devices for augmenting performance. A piezoelectrically-actuated synthetic jet array is one under consideration. Synthetic jets are zero-net–mass-flow jets realized by a cavity with an oscillating diaphragm on one side and an orifice or multiple orifices on the other side. They generate highly unsteady jetting flows that can impinge upon heated surfaces and enhance cooling. However, the synthetic jet actuation components might interfere with other components of the electronics module, such as the fan, requiring a displacement of the cavity center from the jet array center. Herein, heat transfer enhancement by an inclined piezoelectrically-actuated synthetic jet arrangement in a heat sink for electronics cooling has been experimentally and numerically studied. A wedge-shaped platform is designed to introduce the jets with an inclined configuration into the finned channels of the heat sink. The unit is inclined to avoid interference with other components of the module. The penalty is described in terms of velocities of jets emerging from this wedge-shaped platform, compared to those from an aligned cavity-orifice design. Effects on heat transfer performance for the heat sink are documented. The jets are arranged as wall jets passing over heat sink fins. The experimental study is complemented with a numerical analysis of flow within the synthetic jet cavity. Optimization is done on the number of jets against the penalty on jet velocity for obtaining maximum cooling performance. The jets are driven by piezoelectric actuators operating at resonance frequencies of 700–800 Hz resulting in peak jet velocities of approximately 35m/s from 92, 0.9 mm × 0.9 mm orifices. The results give guidance to those who face a similar interference problem and are considering displacement of the synthetic jet assembly.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In