0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of a Multi-Device Jet Impingement Cooler With Phase Change Using HFE-7100

[+] Author Affiliations
Shailesh N. Joshi, Ercan M. Dede

Toyota Research Institute, Ann Arbor, MI

Matthew J. Rau, Suresh V. Garimella

Purdue University, West Lafayette, IN

Paper No. HT2013-17059, pp. V003T10A004; 9 pages
doi:10.1115/HT2013-17059
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

Jet impingement cooling with phase change has shown the potential to meet the increased cooling capacity demands of high-power-density (of order 100 W/cm2) automotive electronics components. In addition to improved heat transfer, phase change cooling has the potential benefit of providing a relatively isothermal cooling surface. In the present study, two-phase jet impingement cooling of multiple electronic devices is investigated, where the fluorinated dielectric fluid HFE-7100 is used as the working fluid. Four different types of jet arrays, namely, a single round jet with orifice diameter of 3.75 mm, and three different 5 × 5 arrays of round jets with orifice diameters of 0.5 mm, 0.6 mm and 0.75 mm, were tested and compared for both heat transfer and pressure drop. The experimental Reynolds number at the orifice ranged from 1860 to 9300. The results show that for the same orifice pressure drop, the single jet reached CHF at approximately 60 W/cm2, while the 5 × 5 array (d = 0.75 mm) safely reached heat fluxes exceeding 65 W/cm2 without reaching CHF. Additionally, the experimental results show that the multi-device cooler design causes an unintended rise in pressure inside the test section and a subsequent increase in sub-cooling from 10 K to 23.3 K.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In