0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimizing a Functionally Graded Metal-Matrix Heat Sink Through Growth of a Constructal Tree of Convective Fins

[+] Author Affiliations
Jacob Kephart

Naval Surface Warfare Center, Carderock Division, Philadelphia, PAVillanova University, Philadelphia, PA

G. F. Jones

Villanova University, Philadelphia, PA

Paper No. HT2013-17384, pp. V003T10A001; 12 pages
doi:10.1115/HT2013-17384
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

This work focuses on an analytical approach to understand optimal material utilization in metal matrix heat exchangers. An objective of this work is to develop a bridge between a fully defined and discrete structure to that of a functionally graded porous media. A porous media heat exchanger is a structure which uses porous material, such as a metal foam, to achieve large convective surface areas in a small volume while also using the media as a conductive path from the heat source or sink. Therefore, a functionally graded porous media heat exchanger has a porosity that is specified as a function of position. Constructal theory is used here to develop increasingly complex convective fin structures, optimized at each level of complexity, which have a resulting characteristic of 2-D functional grading. The approach described here is developed from first principles by using Fourier’s law to develop analytical solutions and seeks to yield an optimized heat exchanger configuration that maximizes total heat transfer subject to a fixed amount conductive material, total volume, and flow condition.

Copyright © 2013 by ASME
Topics: Metals , Fins , Heat sinks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In