Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Transport in the Gallium Nitride Chemical Vapor Deposition Process

[+] Author Affiliations
Jiandong Meng, Yogesh Jaluria

Rutgers, The State University of New Jersey, Piscataway, NJ

Paper No. HT2013-17081, pp. V003T09A003; 9 pages
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME


A numerical study has been carried out to characterize the metalorganic chemical vapor deposition (MOCVD) growth of Gallium Nitride (GaN) in a rotating-disk reactor. The major objective of this work is to examine the dependence of the growth rate and thin film uniformity on the primary parameters. First of all, for a rotating-disk system, the governing equations involved are obtained. Then, with the effect of thermal buoyancy included and based on the detailed mathematical model and chemical reaction mechanisms, the 3D simulation study is conducted for a rotating reactor. A comparison between the predicted growth rate and experimental data is presented. In addition, the effect of various primary operating and design parameters on the growth rate of GaN and thin-film uniformity is also examined. This provides further insight into the reactor performance and the characteristics of the entire process. The results obtained can also form the basis for the future design and optimization of this system.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In