0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational and Experimental Study of Enhanced Mixing in a Gas Turbine Combustor Using Guide Vanes

[+] Author Affiliations
Alka Gupta, Mohammed Saeed Ibrahim, Benjamin Wiegand, Ryoichi Amano

University of Wisconsin-Milwaukee, Milwaukee, WI

Paper No. HT2013-17186, pp. V003T08A007; 10 pages
doi:10.1115/HT2013-17186
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment; Symposium in Honor of Professor Richard Goldstein; Symposium in Honor of Prof. Spalding; Symposium in Honor of Prof. Arthur E. Bergles
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5549-2
  • Copyright © 2013 by ASME

abstract

A number of studies have shown that the flow field exiting a combustor of a gas turbine cycle is highly non-uniform in pressure, velocity and, most importantly, temperature. Much research has been dedicated to the cooling of gas turbine blades using internal, film cooling, impingement jets, and pin/fin cooling technologies. Such designs allow for heated blades to be cooled from the inside out. While advancements in this type of blade cooling technology provide effective means to reduce the occurrence of blade failure due to material overheat conditions, the effect of externally reducing or eliminating the temperature non-uniformities in the exit flow from the combustor would assist in the solution. The goal of this study is to optimize the mixing of primary and dilution air in the dilution zone of the combustor using guide vanes. This improvement in mixing would lead to increase in the degree of temperature uniformity with respect to the radial position at the exit nozzle. To achieve this objective, both experimental and computational studies were performed to investigate the heat and flow behaviors with 45° spherically swept guide vanes attached to the dilution holes. These guide vanes were intended to direct the dilution jets into the primary flow and enhance mixing. A parameter was defined in terms of the temperatures of the dilution and primary flow streams at the inlet and the exit plane, called the mixture fraction. Based on the mixture fraction value, it was found that the guide vanes produce a more uniform exit temperature flow field as compared to the case when there were no guide vanes used. Also, the design was modified for different alignment orientations of the guide vanes — 0°, 30°, 60° and 90° with respect to the primary flow — with the 60° orientation fostering the best results.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In