0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Trajectory Optimization of Water Spray Cooling in a Liquid Piston Air Compressor

[+] Author Affiliations
Mohsen Saadat, Farzad A. Shirazi, Perry Y. Li

University of Minnesota, Minneapolis, MN

Paper No. HT2013-17611, pp. V002T07A031; 8 pages
doi:10.1115/HT2013-17611
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Heat and Mass Transfer in Fire and Combustion; Heat Transfer in Multiphase Systems; Heat and Mass Transfer in Biotechnology
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5548-5
  • Copyright © 2013 by ASME

abstract

An efficient and sufficiently power dense air compressor/expander is the key element in a Compressed Air Energy Storage (CAES) approach. Efficiency can be increased by improving the heat transfer between air and its surrounding materials. One effective and practical method to achieve this goal is to use water droplets spray inside the chamber when air is compressing or expanding. In this paper, the air compression cycle is modeled by considering one-dimensional droplet properties in a lumped air model. While it is possible to inject water droplets into the compressing air at any time, optimal spray profile can result in maximum efficiency improvement for a given water to air mass ratio. The corresponding optimization problem is then defined based on the stored energy in the compressed air and the required input works. Finally, optimal spray profile has been determined for various water to air mass ratio using a general numerical approach to solve the optimization problem. Results show the potential improvement by acquiring the optimal spray profile instead of conventional constant spray flow rate. For the specific compression chamber geometry and desired pressure ratio and final time used in this work, the efficiency can be improved up to 4%.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In