0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of an Interrupted-Plate Heat Exchanger Used in a Liquid-Piston Compression Chamber for Compressed Air Energy Storage

[+] Author Affiliations
Chao Zhang, Farzad A. Shirazi, Bo Yan, Terrence W. Simon, Perry Y. Li, James Van de Ven

University of Minnesota, Minneapolis, MN

Paper No. HT2013-17484, pp. V002T04A002; 11 pages
doi:10.1115/HT2013-17484
From:
  • ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology
  • Volume 2: Heat Transfer Enhancement for Practical Applications; Heat and Mass Transfer in Fire and Combustion; Heat Transfer in Multiphase Systems; Heat and Mass Transfer in Biotechnology
  • Minneapolis, Minnesota, USA, July 14–19, 2013
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 978-0-7918-5548-5
  • Copyright © 2013 by ASME

abstract

In the Compressed Air Energy Storage (CAES) approach, air is compressed to high pressure, stored, and expanded to output work when needed. The temperature of air tends to rise during compression, and the rise in the air internal energy is wasted during the later storage period as the compressed air cools back to ambient temperature.

The present study focuses on designing an interrupted-plate heat exchanger used in a liquid-piston compression chamber for CAES. The exchanger features layers of thin plates stacked in an interrupted pattern. Twenty-seven exchangers featuring different combinations of shape parameters are analyzed. The exchangers are modeled as porous media. As such, for each exchanger shape, a Representative Elementary Volume (REV), which represents a unit cell of the exchanger, is developed. The flow through the REV is simulated with periodic velocity and thermal boundary conditions, using the commercial CFD software ANSYS FLUENT. Simulations of the REVs for the various exchangers characterize the various shape parameter effects on values of pressure drop and heat transfer coefficient between solid surfaces and fluid. For an experimental validation of the numerical solution, two different exchanger models made by rapid prototyping, are tested for pressure drop and heat transfer. Good agreement is found between numerical and experimental results. Nusselt number vs. Reynolds number relations are developed on the basis of pore size and on hydraulic diameter.

To analyze performance of exchangers with different shapes, a simplified zero-dimensional thermodynamic model for the compression chamber with the inserted heat exchange elements is developed. This model, valuable for system optimization and control simulations, is a set of ordinary differential equations. They are solved numerically for each exchanger insert shape to determine the geometries of best compression efficiency.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In