0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Study of the Coolants Distributor for Machining Process

[+] Author Affiliations
Tala Moussa, Bertrand Garnier

LUNAM, University of Nantes, Nantes, France

Dominique Dellavalle

ONIRIS Nantes, Nantes, France

Hassan Peerhossaini

Université Paris Diderot, Paris, France

Paper No. FEDSM2013-16354, pp. V01CT27A004; 10 pages
doi:10.1115/FEDSM2013-16354
From:
  • ASME 2013 Fluids Engineering Division Summer Meeting
  • Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Liquid-Solids Flows; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes; Transport Phenomena in Mixing; Turbulent Flows: Issues and Perspectives
  • Incline Village, Nevada, USA, July 7–11, 2013
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5556-0
  • Copyright © 2013 by ASME

abstract

Grinding is a machining process which may encounter excessive heat generated by the friction between the wheel and the material, and therefore degrade the tool as well as the material. The heat has hence, to be removed as efficiently as possible, most often by external cooling. The fluid is projected on the hot interface between the tool and the material through a curved duct coolant distributor. The performance of such a system is strongly dependent on the fluid flow in the curved duct and on the impinging jet flow properties. To optimize cooling setup, CFD simulations and in-situ experiments using particle image velocimetry (PIV) have been made, as well as global flow rate and pressure measurements in the curved duct. A three-dimensional model of a curved duct with 25 outlet nozzles has been studied for duct Reynolds number up to 100,000. Different geometrical configurations for various nozzle diameters have been studied. Due to the complexity of the distributor geometry, it is shown that the global hydraulic balance is not appropriate for sizing the industrial process. On the contrary, satisfactory trend matching in fluid flow streamline behavior is between numerical and experimental results, and an accurate prediction of the pressure drop both show that the numerical simulation is reliable to capture the flow pattern within the curved channel distributor.

Copyright © 2013 by ASME
Topics: Machining , Coolants

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In