0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Investigation on the Multiphase Flows in a Photobioreactor for Algae Cultivation

[+] Author Affiliations
Hui Hu, Matteo del Ninno, Zhiyou Wen

Iowa State University, Ames, IA

Zifeng Yang

Wright State University, Dayton, OH

Paper No. FEDSM2013-16436, pp. V01CT24A005; 11 pages
doi:10.1115/FEDSM2013-16436
From:
  • ASME 2013 Fluids Engineering Division Summer Meeting
  • Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Liquid-Solids Flows; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes; Transport Phenomena in Mixing; Turbulent Flows: Issues and Perspectives
  • Incline Village, Nevada, USA, July 7–11, 2013
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5556-0
  • Copyright © 2013 by ASME

abstract

Light absorption, fluid dynamics, and algal metabolism are the three key factors in determining the overall algae cultivation performance of a photobioreactor. The turbulent mixing of multiphase flows inside the photobioreactor (i.e., liquid phase — water, gas phase — CO2 and O2, and solid phase — algae cells) is the core connecting the three key factors together. In the present study, a comprehensive experimental investigation is conducted to quantify the effects of turbulent mixing in photobioreactors on the reactor performance for algae cultivation. A high-resolution particle image velocity (PIV) system will be used to achieve time-resolved, in-situ flow field measurements to quantify the turbulent mixing inside the bioreactors, while algal cultures will also be grown in the same reactors. The effects of various important controlling flow parameters, such as the flow rate of the air flow, the formation of the circulation regions, and the turbulent kinetic energy level of the mixing flow inside the photobioreactor on the final growth rate of algae, were investigated in great detail. The detailed flow field measurements results about the mixing characteristics are correlated with the algal growth performance in the photobioreactors to elucidate the underlying physics in order to explore/optimize design paradigms for the the optimum design of photobioreactors for algal cultivation.

Copyright © 2013 by ASME
Topics: Multiphase flow

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In