Full Content is available to subscribers

Subscribe/Learn More  >

Capturing Subgrid Physics in DNS of Multiphase Flows

[+] Author Affiliations
Gretar Tryggvason, Bahman Aboulhasanzadeh

University of Notre Dame, Notre Dame, IN

Paper No. FEDSM2013-16315, pp. V01CT23A005; 5 pages
  • ASME 2013 Fluids Engineering Division Summer Meeting
  • Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Liquid-Solids Flows; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes; Transport Phenomena in Mixing; Turbulent Flows: Issues and Perspectives
  • Incline Village, Nevada, USA, July 7–11, 2013
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5556-0
  • Copyright © 2013 by ASME


Mass transfer in the liquid phase of gas-liquid multiphase flows usually takes place at a considerably slower rate than the transfer of momentum, so mass flux boundary layers are much thinner than momentum boundary layers. In Direct Numerical Simulations (DNS) the resolution requirement for flows where the Schmidt number (kinematic viscosity divided by mass diffusion) is high are therefore significantly higher than for flow without mass transfer. While it is, in principle, possible to capture the mass transfer using adaptive grid refinement, the structure of the boundary layer is relatively simple and well understood. Here we discuss a multi-scale approach to compute the mass transfer from buoyant bubbles, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In