0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparative Simulations of Free Surface Flows Using VOF-Methods and a New Approach for Multi-Scale Interfacial Structures

[+] Author Affiliations
Susann Hänsch, Dirk Lucas, Thomas Höhne, Eckhard Krepper, Gustavo Montoya

Helmholtz-Zentrum Dresden-Rossendorf e. V. (HZDR), Dresden, Germany

Paper No. FEDSM2013-16104, pp. V01CT23A002; 10 pages
doi:10.1115/FEDSM2013-16104
From:
  • ASME 2013 Fluids Engineering Division Summer Meeting
  • Volume 1C, Symposia: Gas-Liquid Two-Phase Flows; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Liquid-Solids Flows; Multiscale Methods for Multiphase Flow; Noninvasive Measurements in Single and Multiphase Flows; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes; Transport Phenomena in Mixing; Turbulent Flows: Issues and Perspectives
  • Incline Village, Nevada, USA, July 7–11, 2013
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5556-0
  • Copyright © 2013 by ASME

abstract

This paper presents free surface flow simulations using different VOF-like interface capturing methods. Both the interFoam solver available in OpenFOAM and the Free Surface Model implemented in ANSYS CFX are applied for the collapse of a water column hitting an obstacle. The computational results of these established methods are compared to a new multi-field concept which is developed for flow situations with multi-scale interfacial structures. The new concept extends the inhomogeneous MUltiple SIze Group (MUSIG)-Model for polydispersed flows by adding a large-scale continuous gas phase. It represents the largest gas structures whose filtered gas-liquid interfaces are captured within the computational domain. Adequate interfacial transfer formulations are introduced for area density and drag and allow the use of different closure models depending on the local morphology. By including appropriate models for the mass transfer, transitions between dispersed and continuous gas morphologies can be described. Thus not only gas-liquid interfaces for large gas structures are detected, but also small-scale bubbles that are entrained under the free surface can be described properly taking into account coalescence- and breakup processes. The concept further improves free surface simulations by including sub-grid information about small waves and instabilities at the free surface. Therefore a new treatment of turbulent kinetic energy is applied via source terms at the free surface. The application of this concept to the dambreak-case with an obstacle demonstrates the breakup of a continuous gas phase and the appearance of polydispersed gas. The collapse of the water column is accompanied by trapping of gas which breaks up to smaller structures. The quality of interface detection during the simulation is compared to the above mentioned VOF-methods. Furthermore the formation of a bubble size distribution underneath the surface serves as a demonstration of the possible benefit using such an averaged multi-field approach.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In