0

Full Content is available to subscribers

Subscribe/Learn More  >

Transport Phenomena in Passively Manipulated Chaotic Flows: Split-and-Recombine Reactors

[+] Author Affiliations
Akram Ghanem, Thierry Lemenand

LUNAM Université, Nantes, France

Dominique Della Valle

ONIRIS - Nantes, Nantes, France

Hassan Peerhossaini

Université Paris Diderot, Paris, France

Paper No. FEDSM2013-16077, pp. V01BT15A002; 10 pages
doi:10.1115/FEDSM2013-16077
From:
  • ASME 2013 Fluids Engineering Division Summer Meeting
  • Volume 1B, Symposia: Fluid Machinery; Fluid Power; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Flow Manipulation and Active Control: Theory, Experiments and Implementation; Fundamental Issues and Perspectives in Fluid Mechanics
  • Incline Village, Nevada, USA, July 7–11, 2013
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5555-3
  • Copyright © 2013 by ASME

abstract

Static mixers and multifunctional heat exchangers/reactors are being used increasingly in process industries. In the inertial or turbulent regime, mixers often incorporate inserts or corrugated walls whose primary function is to create embedded flow vorticity. On the other hand, in low-Reynolds-number flows, for viscosity or residence time purposes, it is necessary to provide solutions based on kinematic mixing, i.e. the topology of the primary flow, such as split-and-recombine reactors (SAR). The concept is based on passive liquid stream division, then rotation in bends of opposite chiralities, and finally recombination, achieving stretching/folding following the baker’s transform. Mixing is efficiently ensured by diffusion without generating prohibitive pressure drops. In this work, a chemical probe is used to study mixing and mass transfer in two different split-and-recombine square duct geometries, SAR-1 and SAR-2 of 3 mm side. Results show that effective mass transfer and mixing can be achieved with a short reactor length and moderate pressure losses; the SAR-1 geometry being more efficient. The chaotic configurations are a good compromise even for higher Reynolds numbers compared to static mixers operating in the transitional regime: they produce moderate pressure losses while enhancing mass transfer.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In