0

Full Content is available to subscribers

Subscribe/Learn More  >

Reynolds Averaged Navier Stokes Models Compared to Direct Numerical Simulations in an Adverse Pressure Gradient Boundary Layer Over a Flat Plate

[+] Author Affiliations
Daniel Routson, James Ferguson

Boise State University, Boise, ID

John Crepeau, Donald McEligot

University of Idaho, Moscow, ID

Ralph Budwig

University of Idaho, Idaho Falls, ID

Paper No. FEDSM2013-16554, pp. V01AT07A005; 7 pages
doi:10.1115/FEDSM2013-16554
From:
  • ASME 2013 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Advances in Fluids Engineering Education; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods
  • Incline Village, Nevada, USA, July 7–11, 2013
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5554-6
  • Copyright © 2013 by ASME

abstract

In Reynolds-Averaged Navier Stokes (RANS) models simplifying assumptions breakdown in near wall regions. Wall functions/treatments become inaccurate and the homogeneity and isotropy models may not hold. To see the effect that these assumptions have on the validity of boundary layer results in a commercially available RANS code, key boundary layer parameters are compared from laminar, transitional, and fully turbulent RANS results to an existing direct numerical simulation (DNS) simulation for flow over a flat plate with an adverse pressure gradient (APG). Parameters compared include velocity profiles in the free stream, boundary layer thicknesses, skin friction coefficient and the pressure gradient parameter. Results show comparable momentum thickness and pressure gradient parameters between the transition RANS model and the DNS simulation. Differences in the onset of transition between the RANS transition model and DNS are compared as well. These simulations help evaluate the models used in the RANS code. Of most interest is the transition model, a transition shear-stress transport (SST) k–omega model. The RANS code is being used in conjunction with an APG boundary layer experiment being undertaken at the Idaho National Laboratory (INL).

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In