Full Content is available to subscribers

Subscribe/Learn More  >

An Approach on Fluid-Structure Interaction for the Prediction of Blood Flow in Aneurysms With Various Shapes

[+] Author Affiliations
Sang Hyuk Lee, Nahmkeon Hur, Seongwon Kang

Sogang University, Seoul, Korea

Paper No. FEDSM2013-16397, pp. V01AT04A005; 8 pages
  • ASME 2013 Fluids Engineering Division Summer Meeting
  • Volume 1A, Symposia: Advances in Fluids Engineering Education; Advances in Numerical Modeling for Turbomachinery Flow Optimization; Applications in CFD; Bio-Inspired Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES, and Hybrid RANS/LES Methods
  • Incline Village, Nevada, USA, July 7–11, 2013
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5554-6
  • Copyright © 2013 by ASME


Recently, the rapid evolution of numerical methodologies for CFD and structural analyses has made it possible to predict the arterial hemodynamics closely related to vascular disease. In the present study, a framework for fluid-structure interaction (FSI) analysis was developed to accurately predict the arterial hemodynamics. The numerical results from the FSI analysis of the hemodynamics inside aneurysms of various shapes were compared to the results without FSI analysis. The results showed that FSI analysis needs to be performed in order to accurately predict the blood flow affected by the wall motion of compliant arteries. FSI analysis is essential to predict the hemodynamics in a saccular aneurysm because the arterial wall’s movement, which is a result of the variation of blood pressure in the aneurysmal sac, mainly produces the blood flow to a saccular aneurysm.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In