Full Content is available to subscribers

Subscribe/Learn More  >

Modelling of Thin-Film Single and Multi-Layer Nanosecond Pulsed Laser Processing

[+] Author Affiliations
Adrian H. A. Lutey

Università di Bologna, Bologna, Italy

Paper No. MSEC2013-1093, pp. V001T01A074; 8 pages
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME


A complete model of nanosecond pulsed laser scribing of arbitrary thin multi-layer structures is presented. The chain of events is separated according to time-scale; an initial simulation considers material response during the pulse; another combines this result with the much slower effects of heat flow away from the laser axis. The former considers heating, vaporisation and phase explosion of metals in the course of a single pulse, accounting for variations in thermal conductivity and optical absorption as the material becomes superheated and approaches its critical temperature. The latter calculates the bidimensional heat flow in a complete multi-layer structure over the course of a scribing operation, combining material properties and considering removal by both short-pulse ablation and long-term heating of the work piece. Simulation results for the single pulse ablation of an aluminium target align well with published experimental data both in terms of phase explosion threshold and ablation depth as a function of fluence. Bidimensional heat flow simulations of a polypropylene–aluminium–polypropylene triplex structure reveal the progression of events towards steady state behaviour; aluminium ejected due to short-pulse ablation and plastic removed due to conduction.

Copyright © 2013 by ASME
Topics: Thin films , Lasers , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In