0

Full Content is available to subscribers

Subscribe/Learn More  >

Empirical Modeling of Direct Electric Current Effect on Machining Cutting Force

[+] Author Affiliations
Elizabeth Jones, Joshua J. Jones, Laine Mears

Clemson University, Greenville, SC

Paper No. MSEC2013-1229, pp. V001T01A059; 7 pages
doi:10.1115/MSEC2013-1229
From:
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME

abstract

Metallic materials can be made more ductile and be formed at lower forces through the application of electrical current during deformation, termed Electrically-Assisted Forming (EAF). The current provides a degree of resistive heating, but also facilitates deformation by direct electrical mechanisms (termed the electroplastic effect). It is envisioned that this approach, currently applied to bulk/sheet deformation, could also be used to reduce the flow stress in the deformation zone of the machining shear plane. The objective of this work is to study and model the effect of electric current on forces in machining in order to relate the force reduction to the current level and machining process parameters. To perform this, skiving tests and orthogonal machining tests are performed with varying electrical conditions. It is shown that application of electric current does reduce machining force by up to 60% under certain conditions.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In