0

Full Content is available to subscribers

Subscribe/Learn More  >

Melt Pool Flow and Surface Evolution During Pulsed Laser Micro Polishing of Ti6Al4V

[+] Author Affiliations
Chao Ma, Madhu Vadali, Neil A. Duffie, Frank E. Pfefferkorn, Xiaochun Li

University of Wisconsin-Madison, Madison, WI

Paper No. MSEC2013-1117, pp. V001T01A054; 9 pages
doi:10.1115/MSEC2013-1117
From:
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME

abstract

Extensive experimental work has shown that pulsed laser micro polishing (PLμP) is effective for polishing micro metallic parts. However, the process physics have not been fully understood yet, especially with respect to the melt pool flow. A reliable physical model can be of significant assistance in understanding the fluid flow in the melt pool and its effect on PLμP. In this paper, a two-dimensional axisymmetric transient model that couples heat transfer and fluid flow is described that was constructed using the finite element method. The model not only provided the solutions to the temperature and velocity fields but also predicted the surface profile evolution on a free deformable surface. The simulated melt depth and resolidified surface profiles matched those obtained from optical images of PLμPed sample cross-sections. The model was also used to study the effect of laser pulse duration on the melt pool flow. The study suggests that longer pulses produce more significant fluid flows. The cut-off pulse duration below which minimal fluid flows should be expected was estimated to be 0.66 μs for Ti6Al4V, which also matched well with the experimental results. It is evident that the coupled model offers reliable predictions and thus can be extended for a more complex parametric study to provide further insights for PLμP.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In