0

Full Content is available to subscribers

Subscribe/Learn More  >

Design of a 3-DOF Compliant Parallel Mechanism for Displacement Amplification

[+] Author Affiliations
Qiang Zeng, Kornel F. Ehmann

Northwestern University, Evanston, IL

Paper No. MSEC2013-1095, pp. V001T01A049; 14 pages
doi:10.1115/MSEC2013-1095
From:
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME

abstract

Prevalent general design methods and applications of compliant displacement amplifiers are focused on 1-DOF units composed into serial structures, which are limited by their output motions, stiffness, heat balance, repeatability and resonant frequencies. To improve the output properties of compliant displacement amplifiers, a monolithic structure is presented in the form of a compliant parallel mechanism. In the proposed moving structure, the compliant mechanism of the displacement amplifier is designed with 3-DOF to generate uniformly magnified output properties in all directions. High first resonant frequencies and amplification ratios are achieved in a compact size compared to existing compliant displacement amplifiers. The related kinematics, amplification ratios and resonant frequencies of the amplifier are analytically modeled, and the results are simulated by finite-element analysis. The proposed design is employable for micro/nano positioning stages operating within a prismatic output workspace.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In