0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanics of Modulation Assisted Machining

[+] Author Affiliations
Ho Yeung, Yang Guo, Narayan K. Sundaram, James B. Mann, W. Dale Compton, Srinivasan Chandrasekar

Purdue University, West Lafayette, IN

Paper No. MSEC2013-1068, pp. V001T01A041; 8 pages
doi:10.1115/MSEC2013-1068
From:
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME

abstract

The controlled application of low-frequency modulation to machining — Modulation Assisted Machining (MAM) — effects discrete chip formation and disrupts the severe contact condition at the tool-chip interface. The role of modulation in reducing the specific energy of machining with ductile alloys is demonstrated using direct force measurements. The observed changes in energy dissipation are analyzed and explained, based on the mechanics of chip formation.

Copyright © 2013 by ASME
Topics: Machining

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In