Full Content is available to subscribers

Subscribe/Learn More  >

Interface Delamination of Diamond-Coated Carbide Tools Considering Coating Fractures by XFEM

[+] Author Affiliations
Ping Lu, Kevin Chou

The University of Alabama, Tuscaloosa, AL

Paper No. MSEC2013-1132, pp. V001T01A029; 9 pages
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME


Interface delamination is the major failure mode of diamond-coated carbide tools in machining. On the other hand, coating cracking is possibly accompanied during a tribological process that induces the delamination phenomenon. However, such an influence between the two failure behaviors has not been investigated in a quantitative way to better understand and design diamond coating tools.

In this study, a three-dimensional (3D) indentation model combining cohesive interactions and extended finite element method (XFEM) was developed to investigate the diamond-coating, carbide-substrate interface behavior with the incorporation of coating cracking. The interface interaction was based on a cohesive zone model (CZM) with a bilinear traction-separation law. XFEM was applied to the coating domain to model cracking in the diamond coating with a damage criterion of the maximum principal stress. Deposition stresses were also included to investigate their effect on the coating delamination and fractures. The model was implemented in finite element (FE) codes to analyze the cone crack in brittle coatings, as well as the interface delamination of diamond coated carbide tools. The XFEM model was validated by the indentation testing data from literature in crack initiations and propagations in brittle materials. FE results from the indentation on diamond-coated tools show that the interface delamination size and the loading force become smaller when coating fractures are incorporated in the model, and the deposition stresses will increase the initial crack radius as well as the critical load for delamination in diamond coatings.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In