Full Content is available to subscribers

Subscribe/Learn More  >

GPGPU Accelerated 3-Axis CNC Machining Simulation

[+] Author Affiliations
Dmytro Konobrytskyi, Thomas Kurfess

Clemson University, Clemson, SC

Joshua Tarbutton

University of South Carolina, Columbia, SC

Tommy Tucker

Tucker Innovation, Charlotte, NC

Paper No. MSEC2013-1096, pp. V001T01A025; 11 pages
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME


GPUs (Graphics Processing Units), traditionally used for 3D graphics calculations, have recently got an ability to perform general purpose calculations with a GPGPU (General Purpose GPU) technology. Moreover, GPUs can be much faster than CPUs (Central Processing Units) by performing hundreds or even thousands commands concurrently. This parallel processing allows the GPU achieving the extremely high performance but also requires using only highly parallel algorithms which can provide enough commands on each clock cycle.

This work formulates a methodology for selection of a right geometry representation and a data structure suitable for parallel processing on GPU. Then the methodology is used for designing the 3-axis CNC milling simulation algorithm accelerated with the GPGPU technology. The developed algorithm is validated by performing an experimental machining simulation and evaluation of the performance results.

The experimental simulation shows an importance of an optimization process and usage of algorithms that provide enough work to GPU. The used test configuration also demonstrates almost an order of magnitude difference between CPU and GPU performance results.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In