Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Fiber Optic Sensor to Measure Velocity During Electromagnetic Forming and Welding

[+] Author Affiliations
E. Thibaudeau, B. Turner, T. Gross, B. L. Kinsey

University of New Hampshire, Durham, NH

Paper No. MSEC2013-1242, pp. V001T01A017; 8 pages
  • ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference
  • Volume 1: Processing
  • Madison, Wisconsin, USA, June 10–14, 2013
  • Conference Sponsors: Manufacturing Engineering Division
  • ISBN: 978-0-7918-5545-4
  • Copyright © 2013 by ASME


Previous methods of measuring high velocity deformation in electromagnetic forming and magnetic pulse welding include Photon Doppler Velocimetry (PDV), laser micrometers, and high speed photography. In this paper an alternative method is presented, implementing a fiber optic, reflectance dependent displacement sensor. The sensor is shown to be an attractive low cost solution to measurement of high velocities in high voltage, magnetic environments. Data is shown with respect to sensor characterization including various surface reflectivity values, curvatures, and misalignments; implementation in two forming and welding processes; and verification with high velocity measurement in parallel with PDV. The sensor system is one twentieth the cost of a PDV system, and yet measures velocities accurately to at least 140 m/s. Sensor performance is also enhanced by the use of retroreflective tape, which is shown to increase the displacement range by 9×, decrease sensitivity to misalignment, and increase repeatability and ease of implementation.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In