0

Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady Hydrofoils: Theoretical and Computational Analysis

[+] Author Affiliations
Daniel T. Valentine

Clarkson University, Potsdam, NY

Paper No. OMAE2013-11551, pp. V005T06A093; 12 pages
doi:10.1115/OMAE2013-11551
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 5: Ocean Engineering
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5539-3
  • Copyright © 2013 by ASME

abstract

In this paper the computational problem examined is the impulsive start of a two-dimensional flat-plate hydrofoil at a fixed angle of attack. The method applied is an equally-spaced lumped-vortex panel method. The results from a lumped-vortex wake model and a shed-vortex sheet wake model are reported. Comparisons with the linear theory of Wagner (1925), the theoretical results associated with the single lumped-vortex wake model and the full wake model are presented. In addition, it is shown that the computational predictions are consistent with results reported by Katz and Plotkin (2001); they applied a distribution of vortices to model the wake. In the present paper the importance of resolving the chordwise pressure distribution in unsteady hydrofoil problems is elucidated. New predictions of both the evolution of lift and induced drag are reported for the instantaneously started flat plate. The computational predictions are compared with theorecticalpredictions also discussed in this paper.

Copyright © 2013 by ASME
Topics: Hydrofoil

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In