0

Full Content is available to subscribers

Subscribe/Learn More  >

Seabed Interaction Modelling Effects on the Global Response of Catenary Pipeline: A Case Study

[+] Author Affiliations
Hany Elosta

Technip Norge AS, Sandvika, Norway

Shan Huang, Atilla Incecik

University of Strathclyde, Glasgow, UK

Paper No. OMAE2013-10782, pp. V04AT04A058; 10 pages
doi:10.1115/OMAE2013-10782
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4A: Pipeline and Riser Technology
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5536-2
  • Copyright © 2013 by ASME

abstract

A steel catenary riser (SCR) attached to a floating platform at its upper end encounters oscillations in and near its touchdown zone (TDZ), which results in interaction with the seabed. Field observations and design analysis of SCRs show that the highest stress and greatest fatigue damage occurred near the touchdown point where the SCR first touches the seabed soil. The challenges regarding the fatigue damage assessment of an SCR in the TDZ are primarily because of the non-linear behaviour of SCR–seabed interaction and considerable uncertainty in seabed interaction modelling and geotechnical parameters. Analysis techniques have been developed in the two main areas: SCR–seabed interaction modelling and the influence of the uncertainty in the geotechnical parameters on the dynamic response and fatigue performance of SCRs in the TDZ. Initially, this study discusses the significance of SCR–seabed interaction on the response of an SCR for deepwater applications when subjected to random waves on soft clay using the commercial code OrcaFlex for non-linear time domain simulation. In the next step, this study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. It is proven that employing the improved lateral SCR-seabed interaction model with accurate prediction of soil stiffness and riser penetration with cyclic loading enables us to obtain dynamic global riser performance in the TDZ with better accuracy. The fatigue analyses results prove that the confounding results indicated by the previous research studies on the SCR in the TDZ are due to different geotechnical parameters imposed with the seabed interaction model. The main benefit of employing non-linear seabed approach is to capture the entity of realistic soil interaction behaviour in modelling and analysis and to predict the likelihood of the fatigue damage of the SCR with seabed interaction, thereby minimising the risk of the loss of the containment with the associated environmental impact.

Copyright © 2013 by ASME
Topics: Modeling , Pipelines , Seabed

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In