Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Parameters Influencing Mechanical Response of Constrained and Unconstrained Dents Using Finite Element Modelling

[+] Author Affiliations
W. Hanif, S. Kenny

Memorial University, St John’s, NL, Canada

Paper No. OMAE2013-10762, pp. V04AT04A056; 11 pages
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4A: Pipeline and Riser Technology
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5536-2
  • Copyright © 2013 by ASME


Pipelines may experience damage (e.g. dent, gouge) during handling, installation and normal operations due to external interference. Pipelines in offshore environment may be prone to mechanical damage from events such as ice gouging, frost heave, and seismic fault movement. Damage mechanisms can be associated with deformation or metallurgical/metal loss that may include pipe dent, pipe ovality, ice gouging, pipe buckling, corrosion etc. The type and severity of pipe damage may influence operational, repair and intervention strategies.

For conventional pipelines, the assessment of mechanical damage plays an important role in the development of integrity management programs that may be of greater significance for pipeline systems located in remote harsh environments due to remote location and logistical constraints.

This study examines the effects of plain dents on pipe mechanical response using continuum finite element methods. ABAQUS/Standard (6.10-1) environment was used to simulate damage events and pipe response. Modelling procedures were developed and calibrated against physical and numerical data sets available in public domain. Once confidence in numerical procedures was achieved, an analysis matrix was established to account for a range of influential parameters including Diameter to wall thickness ratio (D/t), indenter diameter to pipe diameter ratio (ID/OD), hoop stress due to internal pressure to yield strength ratio (σhy), and kinematic boundary conditions.

The results from this study provide a basis to support a broader initiative for developing an engineering tool for the assessment of damage interaction with pipeline girth welds and development of an engineering performance criterion.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In