0

Full Content is available to subscribers

Subscribe/Learn More  >

VIV Analysis of Deep Water Steel Catenary Riser Within Pull Tube

[+] Author Affiliations
Lun Qiu

MCS Kenny, Houston, TX

Li Lee

Consultant, MCS Kenny, Houston, TX

Paper No. OMAE2013-10728, pp. V04AT04A053; 5 pages
doi:10.1115/OMAE2013-10728
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4A: Pipeline and Riser Technology
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5536-2
  • Copyright © 2013 by ASME

abstract

The method of pulling a steel catenary riser (SCR) through a steel tube (termed as a pull tube) is common practice for deepwater riser tie back applications. Vortex-induced vibration (VIV) of such a system is complex. VIV analysis programs, such as Shear7 [1], are suitable only for a single, chain-like structure. The application of such a software tool in VIV design of the SCR-pull tube system requires careful consideration of a number of structural and hydrodynamic factors.

This paper presents a methodology for VIV analysis of the combined structural system of the SCR with the pull tube. Firstly, the entire SCR-pull tube system is modeled with the finite element program Flexcom [2]. The modes are then calculated for the entire structure with program Modes [3]. Afterwards, the structural nodes are rearranged for VIV analysis with Shear7. The pull tube is secured on the platform through a number of guides on the truss structure of the hull. The diameter of the pull tube is much larger than that of the SCR, and the pull tube is much stiffer in bending than the SCR is. If the entire structure is analyzed with Shear7, the mode for the pull tube (a mode involving a large motion of the pull tube section), which is very high in order, would be embedded in the analysis. It makes sense to single out the pull tube mode for study as if it is the first mode. A computer program, named as V-Span [4] for subsea span VIV analysis, is used to analyze both in-line and cross-flow VIV of the pull tube.

A numerical example is presented to demonstrate this methodology. This is a deepwater SCR, which has a diameter of 9 inches. The water depth is 6,300 ft. The pull tube is 640 feet long and 20 inch in diameter. Both the loop-eddy and background currents are analyzed. The fatigue damage resulted from both in-line and cross-flow VIV is estimated.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In