0

Full Content is available to subscribers

Subscribe/Learn More  >

An Overview of Theories Describing Head Losses in Slurry Transport: A Tribute to Some of the Early Researchers

[+] Author Affiliations
Sape A. Miedema

Delft University of Technology, Delft, The Netherlands

Paper No. OMAE2013-10521, pp. V04AT04A038; 16 pages
doi:10.1115/OMAE2013-10521
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4A: Pipeline and Riser Technology
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5536-2
  • Copyright © 2013 by ASME

abstract

In dredging, the hydraulic transport of solids is one of the most important processes. Since the 50’s many researchers have tried to create a physical mathematical model in order to predict the head losses in slurry transport. One can think of the models of Durand and Condolios (1952) and Durand (1953), Worster and Denny (1955), Newitt et al. (1955), Gibert (1960), Fuhrboter (1961), Jufin and Lopatin (1966), Zandi and Govatos (1967) and Zandi (1971), Turian and Yuan (1977), Doron et al. (1987) and Doron and Barnea (1993), Wilson et al. (1992) and Matousek (1997). Some models are based on phenomenological relations and thus result in semi empirical relations, other tried to create models based on physics, like the two and three layer models. It is however the question whether slurry transport can be modeled this way at all. Observations in our laboratory show a process which is often non-stationary with respect to time and space. Different physics occur depending on the line speed, particle diameter, concentration and pipe diameter. These physics are often named flow regimes; fixed bed, shearing bed, sliding bed, heterogeneous transport and (pseudo) homogeneous transport. It is also possible that more regimes occur at the same time, like, a fixed bed in the bottom layer with heterogeneous transport in the top layer. It is the observation of the author that researchers often focus on a detail and sub-optimize their model, which results in a model that can only be applied for the parameters used for their experiments.

Copyright © 2013 by ASME
Topics: Slurries

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In