0

Full Content is available to subscribers

Subscribe/Learn More  >

Safety Factors Calibration for Wall Thickness Design of Ultra Deepwater Pipelines

[+] Author Affiliations
Eduardo Oazen, Bruno R. Antunes, Carlos O. Cardoso, Rafael F. Solano

Petrobras, Rio de Janeiro, Brazil

Paper No. OMAE2013-10177, pp. V04AT04A020; 11 pages
doi:10.1115/OMAE2013-10177
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4A: Pipeline and Riser Technology
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5536-2
  • Copyright © 2013 by ASME

abstract

Wall thickness often presents a considerable influence in offshore pipeline capital expenditure (CAPEX). This influence is enhanced in design of ultra deepwater trunk lines of large diameter, where any wall thickness increase provides a huge impact on project costs. In ultra deepwater scenarios, thicker pipelines may eventually implicate not only in higher costs, but may also compromise the project feasibility due to installation load constraints related to laying vessels availability.

One potential way to reduce the pipeline wall thickness is to calibrate fitness-for-purpose safety factors through application of structural reliability methods, instead of utilizing the standardized safety factors presented in international codes. Since mid-nineties, several offshore pipeline design codes have been allowing the calibration of safety factors by structural reliability analysis. The purpose of such an allowance is that structural reliability methods would eliminate some eventual conservatism presented in the safety factors proposed by codes. Although this enables the achievement of optimized safety factors, more than fifteen years have passed and only few pipeline projects have taken advantage of the benefits of safety factor calibration.

This paper evaluates which potential benefits are available through safety factor calibration, particularly for wall thickness reduction purposes in ultra deepwater pipeline design. Calibrated safety factors are presented for some scenarios related to ultra deepwater export pipelines, considering “system collapse criteria” limit state. The calibrated safety factors are compared with the standardized safety factors presented by international pipeline design codes. The potential for safety factor reduction by the utilization of linepipes with more stringent manufacturing tolerances and the consideration of the thermal ageing imposed by coating application are also discussed.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In