0

Full Content is available to subscribers

Subscribe/Learn More  >

Flow Assurance With Water Heated Pipe-in-Pipe in Fields With High Gas Oil Ratio and High Wax Appearance Temperature

[+] Author Affiliations
Leandro P. Basilio, Fabiano G. Drumond, Pedro L. F. Mendes, Alessandro França, Marcílio P. Prado, Jonatas Ribeiro

Petrobras, Rio de Janeiro, RJ, Brazil

Paper No. OMAE2013-10143, pp. V04AT04A016; 10 pages
doi:10.1115/OMAE2013-10143
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 4A: Pipeline and Riser Technology
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5536-2
  • Copyright © 2013 by ASME

abstract

The development of pre-salt fields in the Santos Basin has presented a plenty of technological challenges, which include the production of fluids with high values of GOR (Gas Oil Ratio) and high values of WAT (Wax Appearance Temperature).

To avoid the wax deposition, it is absolutely imperative handling the temperature by insulation and/or heating. If in one hand the production system thermal insulation minimizes the heat losses to the environment, on the other hand the cooling due the thermodynamic effect of gas expansion is inevitable, mainly in fields with high GOR values.

To mitigate the problem of temperature drop, mainly in the risers where the expansion effects are pronounced, various heating systems for subsea pipelines have been studied by PETROBRAS. In parallel to these studies, it was noted that the design philosophy of the offshore production units for the pre-salt fields have indicated the use of turbo–generators to supply electrical power to the production unit, leading to the opportunity of using the generated super heated gases, originally discharged into the atmosphere, in order to feed the riser heating systems based on heated fluids circulation.

Studies of heat exchange performed indicated a great potential for the risers heating by the flow of heated water through the annular of a Pipe-in-Pipe riser, by using a WHRU (Waste Heat Recovery Unit) to recover the power discharged into the atmosphere from the turbo–generators. It was identified the possibility of heating Pipe-in-Pipe risers by circulating heated fresh water in a closed loop with water return to the production unit, or by coupling the riser heating system with the water injection system, using all the facilities for treatment and pumping of water injection.

This paper aims to describe the methodology considered in the development of a conceptual design of a heating system for a Pipe-in-Pipe riser, by the flow of heated water in the annular, in a Free Standing Hybrid Riser configuration. The paper will also present the characteristics associated with the two possibilities of heated water circuit, as well as advantages and disadvantages of each system, and the aspects related to subsea production layout.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In