0

Full Content is available to subscribers

Subscribe/Learn More  >

A Proposed Concept Design Solution Towards Full-Scale Manganese Nodule Recovery

[+] Author Affiliations
H. Santo

National University of Singapore, Singapore

P. Hu

The University of Western Australia, Perth, WA, Australia

B. Agarwal

Bharati Shipyard Ltd. (BSL), Mumbai, MH, India

M. Placidi

University of Southampton, Southampton, Hampshire, UK

J. Zhou

Nanyang Technological University, Singapore

Paper No. OMAE2013-10323, pp. V003T05A005; 11 pages
doi:10.1115/OMAE2013-10323
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Materials Technology; Ocean Space Utilization
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5535-5
  • Copyright © 2013 by ASME

abstract

This paper, a product of an intensive eight-week Lloyd’s Register Educational Trust (LRET) Collegium held during July – September 2012 in Southampton, UK, presents an innovative engineering system concept design for manganese nodule recovery. Issues associated with environmental impacts, such as insufficient or lack of transparent impact studies of any potential full-scale seabed mining, are identified as the key obstacles which could lead to public protest, thus prevent the mining project from taking place. Hence, the proposed system introduces an environmentally friendly solution with the innovative concept of a black box, which performs in-situ nodule-sediment separation and waste discharge, and allows recirculation of waste water. The use of a modularised mining system with small, active hydraulic, crawler-type collectors is proposed to minimise environmental footprint and increase system redundancy. This yields a comparable estimated sediment-to-dry nodule ratio with previous studies in sediment plume impact assessment. The proposed system is a big leap towards a more environmentally friendly solution for achieving (the first) full-scale manganese nodule recovery. Together with the intended small production scale of 0.5 millions dry nodules per year, the proposed system can also be considered as a full-scale experiment or field measurement: a platform for full-scale research concurrently, particularly in the area of environmental impacts. The proposed system, intended to spur more interest in environmental impact studies and to be more transparent to the public, could benefit both industry and research institutes, for the benefit of everybody.

Copyright © 2013 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In