Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Crack Propagation Under Biaxial Tensile Loading: Effect of the Phase Difference on Biaxial Loading

[+] Author Affiliations
Koji Gotoh, Tetsuya Omori, Koji Murakami

Kyushu University, Fukuoka, Japan

Toshio Niwa, Yosuke Anai, Yoshihisa Tanaka

National Maritime Research Institute, Mitaka, Tokyo, Japan

Paper No. OMAE2013-10980, pp. V003T03A036; 6 pages
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Materials Technology; Ocean Space Utilization
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5535-5
  • Copyright © 2013 by ASME


Fatigue crack propagation under biaxial tensile loading is highlighted in this study. Ships and offshore structures are subjected to many types of loading, e.g. wave induced forces, gravity, and inertia forces. Generally, these loadings have different axial components with different phases. However, the structural integrities of structures and vessels are evaluated according to design codes based on theoretical and experimental investigations under a uniaxial loading condition. Most of these codes are based on the S-N curves approach. An approach that does not use S-N curves has been favored by researchers, with the fracture mechanics approach preferred for evaluating the fatigue life of structures. An advanced fracture mechanics approach was developed based on the Re-tensile Plastic zone Generating (RPG) stress criterion for fatigue crack propagation. In this study, fatigue crack propagation tests under biaxial loading with four different phase conditions are performed and the effect of the phase difference under biaxial loading is evaluated. A numerical simulation method of fatigue crack propagation based on the RPG stress criterion under different biaxial loading phase conditions is presented and compared to measured data.

Copyright © 2013 by ASME
Topics: Fatigue cracks



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In