0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Crack Growth Rate and Fracture Toughness of API5L X65 in Sweet Environments

[+] Author Affiliations
Michael A. Tognarelli, Steven Shademan

BP America Production Co., Houston, TX

Ramgopal Thodla

Det Norske Veritas, Columbus, OH

Paper No. OMAE2013-10216, pp. V003T03A006; 8 pages
doi:10.1115/OMAE2013-10216
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 3: Materials Technology; Ocean Space Utilization
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5535-5
  • Copyright © 2013 by ASME

abstract

Corrosion fatigue and fracture toughness in sour environments of APIX65 5L have typically been studied in relatively severe environments like NACE A and NACE B solutions. There are very limited data in sweet and mildly sour environments that are of interest in various applications. This paper presents fatigue crack growth frequency scans in a range of sweet and mildly sour environments as well as on different microstructures: Parent Pipe, Heat Affected Zone (HAZ) and Weld Center Line (WCL). The fatigue crack growth rate (FCGR) increased with decreasing frequency and reached a plateau value at low frequencies. FCGR in the sweet environments that were investigated did exhibit a frequency dependence (increasing with decreasing frequency) and had plateau FCGR in the range of 10–20× the in-air values. In the mildly sour environments that were investigated, FCGR was found to be about 25 to 30× higher than the in-air values. By comparison, in NACE A environments the FCGR is typically about 50× higher than the in-air values. The FCGRs of parent pipe and HAZ were found to be similar over a range of environments, whereas the WCL FCGR data were consistently lower by about a factor of 2×. The lower FCGR of the WCL is likely due to the lower concentration of diffusible hydrogen in the weld. FCGRs as a function of ΔK (stress integrity factor range) were measured on parent pipe at the plateau frequency. The measured Paris law curves were consistent with the frequency scan data.

Rising displacement fracture toughness tests were performed in a range of sweet and sour environments to determine the R-curve behavior. Tests were performed in-situ at a slow K-rate of 0.05Nmm−3/2/s over a range of environmental conditions on parent pipe. The initiation toughness and the slope of the R-curve decreased sharply in the sour environments. The initiation toughness and slopes were largely independent of the notch location as well as environmental conditions. Typical values of initiation toughness were in the range of 90–110N/mm.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In