0

Full Content is available to subscribers

Subscribe/Learn More  >

Fatigue Reliability Evaluation of Marine Risers Under Vortex Induced Vibration

[+] Author Affiliations
Rizwan A. Khan

National Institute of Technology, Jalandhar, Jalandhar, PB, India

Suhail Ahmad

Indian Institute of Technology, Delhi, New Delhi, India

Paper No. OMAE2013-10499, pp. V02AT02A039; 8 pages
doi:10.1115/OMAE2013-10499
From:
  • ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering
  • Volume 2A: Structures, Safety and Reliability
  • Nantes, France, June 9–14, 2013
  • Conference Sponsors: Ocean, Offshore and Arctic Engineering Division
  • ISBN: 978-0-7918-5532-4
  • Copyright © 2013 by ASME

abstract

Depleting oil reserves in shallow waters, off-shore oil fields are opening the avenues of new ventures in deep sea conditions. A marine riser is a major component of an offshore drilling and production system that are either fixed or floating in nature. Deepwater risers are quite long and significant currents usually excite natural bending mode that is much higher than the fundamental bending mode. In ultra deep environment currents usually change in magnitude and direction with depth, thereby inducing possibility of exciting multiple modes of the riser vibration due to VIV. Vortex induced vibration analysis has been carried out of a long marine riser in a probable deep sea location. To improve the understanding under deepwater harsh environments, the behavior of the riser under these forces is thoroughly investigated. 3D Nonlinear dynamic analysis of riser is obtained in the time domain using finite element software package ABAQUS/Aqua. The response histories so obtained are employed for the study of fatigue reliability analyses of riser. Uncertainty modeling, especially of fatigue crack growth parameters, is undertaken using bi-linear crack growth relationship. Results pertaining to fatigue reliability and fatigue crack size evolution are presented using Monte Carlo Simulation. The bi-linear crack growth models are found to lead to higher fatigue life estimation. Sensitivity behavior pertinent to limit state adopted has been thoroughly investigated. These findings implicate inspection schemes for components of the marine structures to ensure minimization of the surprises due to wide scatter of the fatigue phenomenon in marine environment.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In