0

Full Content is available to subscribers

Subscribe/Learn More  >

The Development of a New Concept for Gear Teeth Wear and Damage Detection

[+] Author Affiliations
K. S. Chana

University of Oxford, Oxford, UK

M. T. Cardwell, J. S. Sullivan

QinetiQ Ltd., Farnborough, Hampshire, UK

Paper No. GT2013-94105, pp. V008T44A002; 11 pages
doi:10.1115/GT2013-94105
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 8: Supercritical CO2 Power Cycles; Wind Energy; Honors and Awards
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5529-4
  • Copyright © 2013 by ASME

abstract

Mechanical transmission systems require online health monitoring for several reasons. Gearboxes account for many of the maintenance costs due to repairs, replacements and downtime. Transmission systems feature in many applications including rotor aircraft and wind turbines.

The wind energy industry since its inception has experienced high levels of failure rates. Principal gearbox design defects and structural problems have been notably significant issues of wind turbines and have had to be addressed by the wind turbine manufacturers. Reliability and safety of conventional wind turbines has improved although rates of failures are still disappointingly high.

There still exists a lack of sufficient technology to enable reliable monitoring of the structural and operational conditions of wind turbines and this is currently a significant area of research.

Gearbox monitoring in particular lacks sensor technology to successfully detect tooth damage, high speed and low speed shaft faults. Typically, vibration measurement and spectrum analysis are chosen for gearbox monitoring but, these methods are not able to detect the faults until failure is imminent. More recently acoustic emissions sensors are being developed for early detection of stress and surface defects.

This paper presents a new concept that employs an eddy current sensor fitted to the teeth of an idler gear to detect early micro and macro pitting of the gear tooth surface. A rotating bench test has been carried out to validate the technique where simple eddy current sensors have been fitted to an idler gear. Seeded faults of three different types on an actual gear have been shown to be detectable using this technique. Eddy current sensors are used for their immunity to dust, dirt and oil contamination. Thus this technique is targeted for in-service operation where sensors have not previously been deployed to access the tooth face, flank and root shank.

Copyright © 2013 by ASME
Topics: Wear , Gear teeth

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In