Full Content is available to subscribers

Subscribe/Learn More  >

SCO2PE Operating Experience and Validation and Verification of KAIST_TMD

[+] Author Affiliations
Jekyoung Lee, Jeong Ik Lee, Yoonhan Ahn, Seong Gu Kim

Korea Advanced Institute of Science & Technology, Daejeon, Korea

Jae Eun Cha

Korea Atomic Energy Research Institute, Daejeon, Korea

Paper No. GT2013-94219, pp. V008T34A004; 8 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 8: Supercritical CO2 Power Cycles; Wind Energy; Honors and Awards
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5529-4
  • Copyright © 2013 by ASME


Supercritical carbon dioxide (S-CO2) Brayton cycle has gaining attention due to its compactness and high efficiency at intermediate temperature range of turbine inlet temperature. Thus, many research groups have been trying to develop their own S-CO2 Brayton cycle technology or component design technology. KAIST research team has been trying to develop a S-CO2 turbomachinery design methodology. As a part of this effort, In-House code KAIST_TMD (KAIST Turbomachinery Design) was developed based on open literatures. KAIST_TMD can reflect real gas effect since it uses precise equations and property database rather than ideal gas assumptions. Most special characteristic of KAIST_TMD is that KAIST_TMD can design both of radial type and axial type turbomachineries so it can compare performance of both radial and axial turbomachineries under the same operating conditions. KAIST_TMD provides geometry of turbomachinery and off design performance map also. This research team built a S-CO2 Pump Experiment facility (SCO2PE) to experience the S-CO2 loop operation and to perform validation and verification of KAIST_TMD in near future. Canned motor pump and shell and tube type heat exchanger were installed as the main components of SCO2PE. Main objectives of this paper are to present preliminary experimental data and share the operating experience and troubleshooting of the facility. Data analysis and detailed discussions about an experimental procedure and major issues when pump operates near the critical point will be presented in the paper. As a result, preliminary data were obtained that can be used for improving the facility to increase accuracy of the data for future validation and verification of KAIST_TMD for radial compressor/pump design.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In