Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Turbulence and Flow Distortion on the Performance of Conical Diffusers Operating on Supercritical Carbon Dioxide

[+] Author Affiliations
A. López, B. Monje, D. Sánchez, R. Chacartegui, T. Sánchez

University of Seville, Sevilla, Spain

Paper No. GT2013-94009, pp. V008T34A002; 12 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 8: Supercritical CO2 Power Cycles; Wind Energy; Honors and Awards
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5529-4
  • Copyright © 2013 by ASME


A rapidly growing interest in the supercritical carbon dioxide power cycle has been observed in the last years due to the superb performance of this system in concentrated solar and nuclear applications; a sample of this interest is the number of technical publications submitted to Turbo Expo in the last couple of years. As active members of the supercritical carbon dioxide (SCO2) community, the authors of this work have lately studied the fundamentals of SCO2 flows. The approach followed has nevertheless been different to that of most researchers since it has concentrated on simple devices rather than on an entire turbomachinery. Thus, recent contributions by the authors have shown that major differences are to be expected when air and SCO2 diffuse through simple conical divergent ducts at subsonic speeds, most of which derive from the very different characteristics and performance of the boundary layer when adverse pressure gradients are faced. In particular, the effects of geometry (i.e. divergence angle) and aerodynamic blockage on the static pressure rise coefficient of such a conical diffuser have been reported by the authors in recent technical works. This work presents the effects of other aerodynamic features of the inlet flow to a conical diffuser on the capacity to convert kinetic energy into static pressure. Two flow features are studied: (i) the distortion of the inlet velocity distribution and (ii) the turbulence intensity of the inlet flow. A parallel analysis is developed for air and SCO2 showing that the effects of both distortion and turbulence on diffuser performance are sensitive to the working fluid of choice.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In