0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Purge Flow Swirl on Hot Gas Ingestion Into Turbine Rim Cavities

[+] Author Affiliations
M. B. Zlatinov, C. S. Tan

MIT Gas Turbine Laboratory, Cambridge, MA

D. Little, M. Montgomery

Siemens Energy Inc., Orlando, FL

Paper No. GT2013-94509, pp. V06AT36A014; 13 pages
doi:10.1115/GT2013-94509
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 6A: Turbomachinery
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5522-5
  • Copyright © 2013 by Siemens Energy, Inc.

abstract

Purge air, injected through seals in the hub of axial turbines, is necessary to prevent hot gas ingestion into endwall cavities, but generates losses by viscous interaction with the mainstream flow. Recent work has shown that for a given purge air mass flow rate, introducing swirl into the purge flow can reduce these losses. This paper investigates the effect of introducing such swirl on the ability of purge flow to prevent ingestion. In particular, it is observed that in the presence of the rotating external pressure non-uniformity due to a downstream blade row, swirled purge flow is much less effective in sealing a turbine disk rim cavity compared to non-swirled purge flow. This is reflected in higher purge air mass flow rates necessary to seal a given cavity, and that in turn diminishes the positive effect of pre-swirling purge flow in the first place. It is shown that this will occur whenever the circumferential pressure disturbance associated with the downstream rotating blades is the dominant driver for externally induced ingestion. It is reasoned that swirled purge flow moves with the rotating pressure non-uniformity and responds to it more readily than non-swirled purge flow, which sees the averaged effect of multiple blade passing events. A flow model based on this physical principle is developed, showing good agreement with computational results. The model yields an ingestion criterion with a parametric dependence on purge flow design parameters. The analysis is extended to an unsteady situation, whereby the effects of both stationary and rotating pressure non-uniformities, from vanes and blades respectively, are taken into account simultaneously. This unsteady flow model points to an optimal design space, in the context of minimizing purge flow losses while maintaining an appropriate margin with regard to hot gas ingestion.

Copyright © 2013 by Siemens Energy, Inc.

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In