0

Full Content is available to subscribers

Subscribe/Learn More  >

Assessment of Transition Modeling for the Design of Controlled Diffusion Airfoil Compressor Cascades

[+] Author Affiliations
Vincent Marciniak, Marco Longhitano, Edmund Kügeler

German Aerospace Center (DLR), Cologne, Germany

Paper No. GT2013-94864, pp. V06AT35A016; 11 pages
doi:10.1115/GT2013-94864
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 6A: Turbomachinery
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5522-5
  • Copyright © 2013 by ASME

abstract

The aim of this paper is to investigate whether correlation-based transition models can be used for the design of CDA profiles. To this end, a CDA compressor cascade has been widely experimentally investigated at DLR Cologne. Off-design measurements have been carried out and the influence of the variation of four flow parameters has been investigated: The inlet Mach number, the incidence, the chord-based Reynolds number and the free-stream turbulence intensity. The inlet Mach number has been varied from 0.5 up to 0.8. The incidence was varied over the whole working range and beyond. Realistic values of the Reynolds number and of the free-stream turbulence intensity have been attained. Hence, the test case apt to assess the capacity of the DLR’s in-house turbomachinery specific CFD code TRACE to design modern compressor blades. In this paper, computations simulating the influence of those four parameters on the performance of the CDA profile are presented and compared to the measurements. Two transition models are used for this study: an in-house model denoted MultiMode model and the γ-ReΘ model. In addition, two turbulence models (Wilcox k-ω and Menter k-ω SST) and their turbomachinery extensions have also been used for this study. The results between the different numerical simulations and the measurements are discussed in term of loss coefficients and Mach number distributions. The computed losses are close to the experimental values and the physics of the flow is also well reproduced. Bypass transition as well as laminar separation bubbles have been simulated in accordance with the experimental observations. Hence, the TRACE code is able to predict the onset of transition over a wide range of flow conditions.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In