Full Content is available to subscribers

Subscribe/Learn More  >

Flow Field and Vibration Behavior of Straight Transonic Compressor Cascade due to External Acoustic Excitation

[+] Author Affiliations
Manlu Li, Anping Hou, Xiaodong Yang, Mingming Zhang

Beihang University, Beijing, China

Peng Wang

Shenyang Liming Corporation, Shenyang, China

Paper No. GT2013-94770, pp. V06AT35A014; 9 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 6A: Turbomachinery
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5522-5
  • Copyright © 2013 by ASME


A fluid-structure coupled approach is utilized to study the influence of external acoustic excitation on straight compressor cascade flow field and blade vibration behavior. Interaction between fluid and structure are dealt with in a coupled manner, based on the interface exchange of information between the aerodynamic and structural model. The computation fluid mesh is updated at every time step with an improved algebraic method. The flow field of cascade with/without external acoustic excitation is carried out using a 3D unsteady CFD model based on moving boundary way, as well as some experimental studies based on transonic wind tunnel. Then coupled with blade FE model, mode shapes, frequencies, vibration stress and the structural deformations of blade are identified. The performance of the cascade is obtained by computational and experimental ways, consistency of numerical and test results shows that the numerical model is suitable. The numerical results show that acoustic excitation has a greater impact on negative and designed attack angle in contrast to high positive attack angle. The cascade wake and blade surface pressure frequency characteristic are changed and the main frequency is almost the same as the acoustic excitation frequency. Compared results with no excitation, the vibration characteristics of the blade is changed, also the vibration behavior is sensitive to the excitation amplitude and frequency.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In