0

Full Content is available to subscribers

Subscribe/Learn More  >

Compressor Leading Edge Sensitivities and Analysis With an Adjoint Flow Solver

[+] Author Affiliations
A. Giebmanns, J. Backhaus, C. Frey, R. Schnell

German Aerospace Center (DLR), Koeln, Germany

Paper No. GT2013-94427, pp. V06AT35A009; 11 pages
doi:10.1115/GT2013-94427
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 6A: Turbomachinery
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5522-5
  • Copyright © 2013 by ASME

abstract

Based on the results of a prior study about fan blade degradation, which state a noticeable influence of small geometric changes on the fan performance, an adjoint computational fluid dynamics method is applied to systematically analyze the sensitivities of fan blade performance to changes of the leading edge geometry.

As early as during manufacture, blade geometries vary due to fabrication tolerances. Later, when in service, engine operation results in blade degradation which can be reduced but not perfectly fixed by maintenance, repair and overhaul processes. The geometric irregularities involve that it is difficult to predict the blade’s aerodynamic performance. Therefore, the aim of this study is to present a systematic approach for analyzing geometric sensitivities for a fan blade.

To demonstrate the potential, two-dimensional optimizations of three airfoil sections at different heights of a transonic fan blade are presented. Although the optimization procedure is limited to the small area of the leading edge, the resulting airfoil sections can be combined to a three-dimensional fan blade with an increased isentropic efficiency compared to the initial blade.

Afterwards, an adjoint flow solver is applied to quasi-three-dimensional configurations of an airfoil section in subsonic flow with geometric leading edge variations in orders representative for realistic geometry changes. Validations with non-linear simulation results demonstrate the high quality of the adjoint results for small geometric changes and indicate physical effects in the leading edge region that influence the prediction quality.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In