Full Content is available to subscribers

Subscribe/Learn More  >

Adaptive Flow Field Thermal Modeling Techniques for Turbine Rotor-Stator Cavities

[+] Author Affiliations
Jose Maria Rey Villazón, Arnold Kühhorn

Brandenburgische Technische Universität Cottbus, Cottbus, Germany

Martin Berthold

Rolls-Royce plc, Derby, UK

Paper No. GT2013-94845, pp. V03CT18A003; 11 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by Rolls-Royce Deutschland Ltd & Co KG


At preliminary design stages of the turbine discs design process, reducing uncertainty in the thermal prediction of critical parts models is decisive to bid a competitive technology in the aerospace industry. This paper describes a novel approach to develop adaptive thermal modeling methods for non-gaspath turbine components. The proposed techniques allow automated scaling of disc cavities during preliminary design assessment of turbine architectures.

The research undertaken in this work begins with an overview of the past investigations on the flow field in cavities of the air system surrounding the turbine discs. A theoretical approach is followed to identify the impact of the design geometry and operation parameters of a simplistic rotor-stator cavity, with special focus on swirl and windage effects. Then, a parametric CFD process is set up to conduct sensitivity analysis of the flow field properties. The CFD sensitivity analysis confirmed the parameter influences concluded from the theoretical study.

The findings from the CFD automated studies are used to enhance the boundary conditions of a thermal FE-model of an actual high pressure turbine. The new set of thermal boundary conditions adapts the flow field to changes in the cavity parameters. It was found that the deviation to experimental data of the traditional preliminary modeling technique is about 4 times higher as the deviation of the CFD-enhanced technique. When running the FE-model through a transient cycle, the results from the CFD-enhanced method are significantly closer to the test data than those from the traditional method, which suggests there is high potential for using these adaptive thermal techniques during turbine preliminary design stages.

Copyright © 2013 by Rolls-Royce Deutschland Ltd & Co KG



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In