Full Content is available to subscribers

Subscribe/Learn More  >

Endwall Heat Transfer Measurements of an Outlet Guide Vane at On and Off Design Conditions

[+] Author Affiliations
Lei Wang, Bengt Sundén

Lund University, Lund, Sweden

Valery Chernoray

Chalmers University of Technology, Gothenburg, Sweden

Hans Abrahamsson

GKN Aerospace Engine Systems, Trollhättan, Sweden

Paper No. GT2013-95008, pp. V03CT14A017; 8 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by ASME


The endwall heat transfer characteristics of forced flow past outlet guide vanes (OGVs) in a linear cascade have been investigated by using a liquid crystal thermography (LCT) method. The Reynolds number is kept at 250,000 and both on- and off-design conditions are tested. For the on-design condition where the incidence angle of OGVs is 30°, no obvious flow separation phenomenon was observed; on the contrary, for the off-design conditions where the incidence angle of OGVs is 0° and −31°, respectively, remarkable flow separation was noticed. The results indicate that the incidence angle of OGVs has a significant effect on the endwall heat transfer. In general, the endwall heat transfer coefficients for the off-design conditions are higher than the corresponding on-design condition. In addition, a preliminary CFD analysis was performed and presented. Basically, the results are consistent with the experiments but further investigations are needed in the future work.

Copyright © 2013 by ASME
Topics: Heat transfer , Design



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In