Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Flow Through Porous Metals

[+] Author Affiliations
Michael J. Hargather, Karen A. Thole

Pennsylvania State University, University Park, PA

Paper No. GT2013-94945, pp. V03CT14A016; 10 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by ASME


Porous metals have long been considered as an ideal material in which to manufacture turbine components given the inherent large convective surface area. One consideration, however, in using porous metals is the increase in pressure drop that accompanies these materials. To characterize increases in pressure drop for porous materials, flow measurements were made on numerous porous metal coupons. The porosity of the coupons investigated had a range of four in terms of density. A technique for determining the effective internal flow area from pressure drop measurements was developed to provide an effective diameter. The pressure drop measurements were compared to an ideal isentropic compressible-flow nozzle and to a smooth, straight-walled tube. The comparisons show that the porous channels have a similar, but much larger pressure drop than the smooth walls. The experiments performed demonstrated that these porous geometries can be scaled to provide generalized pressure drop characteristics for all geometries.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In