Full Content is available to subscribers

Subscribe/Learn More  >

A CFD Evaluation of Multiple RANS Turbulence Models for Prediction of Boundary Layer Flows on a Turbine Vane

[+] Author Affiliations
Thomas E. Dyson, David G. Bogard

The University of Texas at Austin, Austin, TX

Sean D. Bradshaw

Pratt & Whitney, East Hartford, CT

Paper No. GT2013-94927, pp. V03CT14A014; 14 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3C: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5516-4
  • Copyright © 2013 by ASME


There is a growing trend toward the use of conjugate CFD for use in prediction of turbine cooling performance. While many studies have evaluated the performance of RANS simulations relative to experimental measurements of the momentum boundary layer, no studies have evaluated their performance in prediction of the accompanying thermal boundary layer. This is largely due to the fact that, until recently, no appropriate experimental data existed to validate these models. This study compares several popular RANS models — including the realizable k-ε and k-ω SST models — with a four equation k-ω model (“Transition SST”) and experimental measurements at selected positions on the pressure and suction sides of a model C3X vane. Comparisons were made using mean velocity and temperature in the boundary layer without film cooling under conditions of high and low mainstream turbulence. The best performing model was evaluated using modification of the turbulent Prandtl number to attempt to better match the data for the high turbulence case. Overall, the models did not perform well for the low turbulence case; they greatly over-predicted the thermal boundary layer thickness. For the high turbulence case, their performance was better. The Transition SST model performed the best with an average thermal boundary layer thickness within 15% of the experimentally measured values. Prandtl number variation proved to be an inadequate means of improving the thermal boundary layer predictions.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In