Full Content is available to subscribers

Subscribe/Learn More  >

Optimization of Forcing Parameters of Film Cooling Effectiveness

[+] Author Affiliations
Hessam Babaee, Sumanta Acharya, Xiaoliang Wan

Louisiana State University, Baton Rouge, LA

Paper No. GT2013-95636, pp. V03BT13A055; 14 pages
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3B: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5515-7
  • Copyright © 2013 by ASME


An optimization strategy is described that combines high-fidelity simulations with response surface construction, and is applied to pulsed film cooling for turbine blades. The response surface is constructed for the film cooling effectiveness as a function of duty cycle, in the range of DC between 0.05 and 1, and pulsation frequency St in the range of 0.2–2, using a pseudo-spectral projection method. The jet is fully modulated and the blowing ratio, when the jet is on, is 1.5 in all cases. Overall 73 direct numerical simulations (DNS) using spectral element method were performed to sample the film cooling effectiveness on a Clenshaw-Curtis grid in the design space. The geometry includes a 35-degree delivery tube and a plenum. It is observed that in the parameter space explored a global optimum exists, and in the present study, the best film cooling effectiveness is found at DC = 0.14 and St = 1.03. In the same range of DC and St, four other local optimums were found. The physical mechanisms leading to the forcing parameters of the global optimum are explored and ingestion of the crossflow into the delivery tube is observed to play an important role in this process. The gradient-based optimization algorithms are argued to be unsuitable for the current problem due to the non-convexity of the objective function.

Copyright © 2013 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In