0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Evaluation of Influence of Internal Ribs on Heat Transfer in Flat Plate Film Cooling

[+] Author Affiliations
Yukiko Agata, Toshihiko Takahashi, Eiji Sakai

Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa, Japan

Koichi Nishino

Yokohama National University, Yokohama, Kanagawa, Japan

Paper No. GT2013-95450, pp. V03BT13A053; 9 pages
doi:10.1115/GT2013-95450
From:
  • ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
  • Volume 3B: Heat Transfer
  • San Antonio, Texas, USA, June 3–7, 2013
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 978-0-7918-5515-7
  • Copyright © 2013 by ASME

abstract

To augment the thermal efficiency of combined power generation plants, the turbine inlet temperature of an industrial gas turbine has been increased. Cooling technology plays a vital role in the durability of gas turbine blades in situations in which the turbine inlet temperature exceeds the allowable temperature of the blade material. Cooling air is also directly associated with the reduction in thermal efficiency because bleed air from the compressor is used for turbine cooling. Thus, improvement in cooling performance has a marked impact on the further augmentation of thermal efficiency by increasing turbine inlet temperature. To evaluate film cooling performance on the basis of heat flux reduction, it is necessary to accurately estimate both heat transfer coefficient and adiabatic film cooling effectiveness. Most studies of film cooling, however, have focused on improving adiabatic film cooling effectiveness. In contrast, there are few studies focusing on heat transfer coefficient. One of the reasons for this is that adiabatic film cooling effectiveness is a performance parameter unique to film cooling. To preliminarily estimate the heat flux through a blade, heat transfer coefficient without film cooling can still be used as substitute. Moreover, the accurate CFD prediction of heat transfer coefficient with film cooling is difficult, compared with the evaluation of adiabatic film cooling effectiveness. Therefore, in this study, we addressed the CFD prediction of heat transfer coefficient with film cooling on a flat plate, and discussed its feasibility. Recent gas turbine blades operated at a turbine inlet temperature of over 1300 degree Celsius employ internal convection cooling with ribbed passages and external film cooling. These cooling technologies have been studied extensively, particularly regarding their individual effects. On the other hand, there are few investigations on the interaction between internal convection cooling and the film cooling. Although most of such film-cooling studies employed stagnant plenums to bleed cooling air, some researchers including the present authors have shown the marked impact of the conditions for supplying coolant air on film cooling performance. In this study, we focus particularly on the influence of internal rib orientation on external film cooling performance along the blade outer surface. CFD analysis is used to resolve the flow fields of the flat plate film cooling and to clarify the influence of rib orientation on heat-transfer.

Copyright © 2013 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In